Module timexseries_clustering.timeseries_container

Expand source code
from pandas import DataFrame


class TimeSeriesContainer:
    """
    A TimeSeriesContainer collect all the relevant information useful to characterizethe time-series coming from
    the ingested dataset.

    Parameters
    ----------
    timeseries_data : DataFrame
        Historical time-series data, in the form of a DataFrame with an index and more than one data column.
    approach : str
        Approach used to cluster time-series data.
    models : dict
        Dictionary of ModelResult objects, all trained on these time-series.
    best_model : dict
        Dictionary with the information of the best clustering for all the metrics and corresponding model.
    xcorr : dict
        Cross-correlation between the data of this time-series and all the other ones.
    """
    def __init__(self, timeseries_data: DataFrame, approach: str, models: dict, best_model: dict, xcorr: dict):
        self.timeseries_data = timeseries_data
        self.approach = approach
        self.models = models
        self.xcorr = xcorr
        self.best_model = best_model

Classes

class TimeSeriesContainer (timeseries_data: pandas.core.frame.DataFrame, approach: str, models: dict, best_model: dict, xcorr: dict)

A TimeSeriesContainer collect all the relevant information useful to characterizethe time-series coming from the ingested dataset.

Parameters

timeseries_data : DataFrame
Historical time-series data, in the form of a DataFrame with an index and more than one data column.
approach : str
Approach used to cluster time-series data.
models : dict
Dictionary of ModelResult objects, all trained on these time-series.
best_model : dict
Dictionary with the information of the best clustering for all the metrics and corresponding model.
xcorr : dict
Cross-correlation between the data of this time-series and all the other ones.
Expand source code
class TimeSeriesContainer:
    """
    A TimeSeriesContainer collect all the relevant information useful to characterizethe time-series coming from
    the ingested dataset.

    Parameters
    ----------
    timeseries_data : DataFrame
        Historical time-series data, in the form of a DataFrame with an index and more than one data column.
    approach : str
        Approach used to cluster time-series data.
    models : dict
        Dictionary of ModelResult objects, all trained on these time-series.
    best_model : dict
        Dictionary with the information of the best clustering for all the metrics and corresponding model.
    xcorr : dict
        Cross-correlation between the data of this time-series and all the other ones.
    """
    def __init__(self, timeseries_data: DataFrame, approach: str, models: dict, best_model: dict, xcorr: dict):
        self.timeseries_data = timeseries_data
        self.approach = approach
        self.models = models
        self.xcorr = xcorr
        self.best_model = best_model